Main Article Content
Abstract
Permasalahan utama dalam penelitian ini adalah ketimpangan data masukan menghasilkan dampak negatif yang signifikan terhadap hasil prediksi dari model Deep Neural Network (DNN). Kemampuan klasifikasi DNN sangat akurat hanya untuk dataset yang berimbang, namun DNN pada awalnya tidak di rancang untuk menangani ketimpangan data. Ketimpangan data merupakan hal yang sering dijumpai dalam dunia nyata, menjadikan ini sebagai tantangan besar dalam prediksi klasifikasi menggunakan model DNN. Penelitian ini berfokus untuk memprediksi tingkat kandungan kolesterol tinggi, kolesterol rendah dan hemoglobin, menggunakan data kasus di kompetisi Zindi Blood Spectroscopy Classification Challenge. Dengan melakukan analisa data, cleansing outlier, fine tunning, model neural network, jaringan pengelompokan data target dengan kategori sejenis, urutan pemrosesan, pemilihan nilai pelipatan (7 pelipatan) yang tepat terhadap data input train dan data test serta epoch 60, dapat meningkatkan hasil nilai score prediksi yang cukup tinggi sebesar 0.94594.
Keywords
Article Details
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
