Main Article Content

Abstract

Abstrak


Fly ash boiler pabrik kelapa sawit saat ini menjadi limbah padat yang belum banyak pemanfaatannya. Fly ash tersebut memiliki kandungan silika yang tinggi dimana dapat dimanfaatkan sebagai adsorben. Tujuan dari penelitian ini adalah untuk memproduksi zeolite  X dari fly ash boiler pabrik kelapa sawit sebagai adsorben pada pemurnian Biodiesel. Saat ini teknologi pemurnian biodiesel masih didominasi dengan menggunakan pencucian dengan air (wet washing) dimana mengakibatkan limbah cair yang dihasilkan tinggi, sehingga perlu diterapkan teknologi dry washing yang meminimalisir limbah cair serta meningkatkan efisiensi waktu pemurnian. Metode penelitian ini menggunakan metode Response Surface Methodology dengan desain eksperimen berupa Central Composite Design yang terdiri atas 3 faktor yaitu faktor konsentrasi H2SO4, suhu dan waktu kalsinasi adsorben. Pengolahan data dilakukan dengan bantuan software Design Expert 12.0. Tahapan pembuatan adsorben ini meliputi pretreatment fly ash, aktivasi fly ash menjadi adsorben dengan menggunakan larutan asam sulfat (5; 7,5; 10 N), pada suhu 60 °C selama 1 jam, lalu dioven pada suhu 110 °C selama 1 jam untuk selanjutnya dilakukan kalsinasi (T: 500, 600, 700 °C; T: 2, 3, 4 jam). Adsorben yang dihasilkan digunakan pada pemurnian biodiesel dengan metode dry washing, analisis XRD dan BET untuk karakterisasi adsorben dan analisis GC-MS pada biodiesel yang dihasilkan. Dari hasil analisis didapatkan bahwa kadar metil ester biodiesel paling optimal sebesar 67,58% dihasilkan pada sampel dengan variabel konsentrasi H2SO4 7,5 N, suhu kalsinasi 600°C dan waktu kalsinasi 3 jam. Adsorben yang dihasilkan adalah zeolite X yang memiliki luas permukaan 72 m2/g sebelum aktivasi dan 98 m2/g setelah aktivasi.

Keywords

Fly As Adsorben Aktivasi Dry Washing Biodiesel

Article Details

How to Cite
Oktavianty, H. (2022). Sintesis Zeolit X dari Fly Ash Boiler Pabrik Kelapa Sawit sebagai Adsorben Pemurnian Biodiesel. Sang Pencerah: Jurnal Ilmiah Universitas Muhammadiyah Buton, 8(2), 430–443. https://doi.org/10.35326/pencerah.v8i2.1938

References

  1. Adisty, T. K., & Mulyadi, A. H. (2017). Pemurnian dan Karakteristik Biodiesel dari Minyak Jelantah dengan Metode Pencucian Dry-Wash Sistem Menggunakan Adsorben Magnesol (Magnesium silikat). Prosiding SENATEK Purwokerto 7 Oktober 2017, 319-324.
  2. Anggoro, D. D., Oktavianty, H., Sasongko, S. B., & Buchori, L. (2020). Effect of dealumination on the acidity of zeolite Y and the yield of glycerol mono stearate (GMS). Chemosphere, 257, 127012. https://doi.org/10.1016/j.chemosphere.2020.127012
  3. Atikah, W. S. (2017). Media Adsorben Pewarna Tekstil the Potentiality of Activated Natural Zeolite From Gunung. Arena Tekstil, 32(1), 17–24. http://ejournal.kemenperin.go.id/jiat/article/view/2650/2641
  4. Ayoola, A. A., Fayomi, O. S. I., & Usoro, I. F. (2018). Data on PKO biodiesel production using CaO catalyst from Turkey bones. Data in Brief, 19, 789–797. https://doi.org/10.1016/j.dib.2018.05.103
  5. Catarino, M., Ferreira, E., Soares Dias, A. P., & Gomes, J. (2020). Dry washing biodiesel purification using fumed silica sorbent. Chemical Engineering Journal, 386, 123930. https://doi.org/10.1016/j.cej.2019.123930
  6. Chelladurai, S. J. S., Murugan, K., Ray, A. P., Upadhyaya, M., Narasimharaj, V., & Gnanasekaran, S. (2020). Optimization of process parameters using response surface methodology: A review. Materials Today: Proceedings, 37(Part 2), 1301–1304. https://doi.org/10.1016/j.matpr.2020.06.466
  7. Feyzi, M., Lorestani Zinatizadeh, A. A., Nouri, P., & Jafari, F. (2018). Catalytic performance and characterization of promoted K-La/ZSM-5 nanocatalyst for biodiesel production. Iranian Journal of Chemistry and Chemical Engineering, 37(2), 33–44. https://doi.org/10.21-9986/2018/2/33-44
  8. Gomes, M. G., Santos, D. Q., De Morais, L. C., & Pasquini, D. (2015). Purification of biodiesel by dry washing, employing starch and cellulose as natural adsorbents. Fuel, 155(April), 1–6. https://doi.org/10.1016/j.fuel.2015.04.012
  9. Imoisili, P. E., Ukoba, K. O., & Jen, T. C. (2020). Green technology extraction and characterisation of silica nanoparticles from palm kernel shell ash via sol-gel. Journal of Materials Research and Technology, 9(1), 307–313. https://doi.org/10.1016/j.jmrt.2019.10.059
  10. Istiningrum, R. B., E.A, P., Sulfiah, L. A. ., & D, N. (2017). Pemanfaatan Abu Sekam Padi Untuk Pemurnian Bahan Baku Dan Produk Biodiesel Dari Minyak Jelantah. JST (Jurnal Sains Dan Teknologi), 6(1), 61–71. https://doi.org/10.23887/jst-undiksha.v6i1.9440
  11. Mäkelä, M. (2017). Experimental design and response surface methodology in energy applications: A tutorial review. Energy Conversion and Management, 151(May), 630–640. https://doi.org/10.1016/j.enconman.2017.09.021
  12. MT, H., Solihudin, S., Ernawati, E., & Pramana, S. (2019). Limbah Cair Industri Minyak Goreng Sawit sebagai Bahan Baku Pembuatan Biodiesel. EduChemia (Jurnal Kimia Dan Pendidikan), 4(1), 34. https://doi.org/10.30870/educhemia.v4i1.5030
  13. Murukutti, M. K., & Jena, H. (2022). Synthesis of nano-crystalline zeolite-A and zeolite-X from Indian coal fly ash, its characterization and performance evaluation for the removal of Cs+ and Sr2+ from simulated nuclear waste. Journal of Hazardous Materials, 423(PA), 127085. https://doi.org/10.1016/j.jhazmat.2021.127085
  14. Niawanti, H. (2020). Review Perkembangan Metode Produksi Dan Development of Production Method and Purification Technology in Making Biodiesel : Jurnal Chemurgy, 04(1), 27–35.
  15. Oktavianty, H., Sunardi, S., & Wardani, R. M. A. A. S. (2021). Sintesis Zeolit Dari Ekstrak Sekam Padi Dan Kaleng Bekas Sebagai Adsorben Penurunan Kesadahan Air. Jurnal Ilmiah Rekayasa Pertanian Dan Biosistem, 9(2), 185–192. https://doi.org/10.29303/jrpb.v9i2.293
  16. Rudiyanto, B., Andrianto, M., Susmiati, Y., Pambudi, N. A., & Riyanto. (2019). Optimization and validation of hydrated magnesium silicate on dry washing purification biodiesel using response surface methodology. Energy Procedia, 158, 333–338. https://doi.org/10.1016/j.egypro.2019.01.098
  17. Salamatinia, B., Hashemizadeh, I., & Abdullah, A. Z. (2013). Alkaline earth metal oxide catalysts for biodiesel production from Palm oil: Elucidation of process behaviors and modeling using response surface methodology. Iranian Journal of Chemistry and Chemical Engineering, 32(1), 113–126.
  18. Sandouqa, A., Al-Shannag, M., & Al-Hamamre, Z. (2020). Biodiesel purification using biomass-based adsorbent manufactured from delignified olive cake residues. Renewable Energy, 151, 103–117. https://doi.org/10.1016/j.renene.2019.11.009
  19. Setyawati, H., Hermansyah, M., & Arifin, S. (2016). Kajian Lanjut Penggunaan Magnesol dan Zeloit Alam Sebagai Adsorben Pada Pemurnian Biodiesel. 04, 39–45.
  20. Susilo, B., Sumarlan, S. H., Feminda Nurirenia, D., Keteknikan, J., Teknologi, P.-F., Brawijaya, P.-U., Veteran, J., & Korespondensi, P. (2017). Pemurnian Bioetanol Menggunakan Proses Distilasi Dan Adsorpsi Dengan Penambahan Asam Sulfat (H 2 so 4 ) Pada Aktivasi Zeolit Alam Sebagai Adsorben. Jurnal Keteknikan Pertanian Tropis Dan Biosistem, 5(1), 19–26.
  21. Suthar, K., Dwivedi, A., & Joshipura, M. (2019). A review on separation and purification techniques for biodiesel production with special emphasis on Jatropha oil as a feedstock. Asia-Pacific Journal of Chemical Engineering, 14(5), 1–19. https://doi.org/10.1002/apj.2361
  22. Thushari, I., & Babel, S. (2018). Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production. Bioresource Technology, 248, 199–203. https://doi.org/10.1016/j.biortech.2017.06.106
  23. Trisnaliani, L. (2018). Proses Produksi Biodiesel Dari Minyak Jelantah Menggunakan Microwave Hydro Distillation Dan Separasi Tegangan Tinggi Biodiesel Production Process From Waste Cooking Oil Using Microwaves Heating Media and High Voltage Separation Methode. 9(02), 25–30.
  24. Utama, P. S., Yamsaensung, R., & Sangwichien, C. (2018). Silica gel derived from palm oil mill fly ash. Songklanakarin Journal of Science and Technology, 40(1), 121–126. https://doi.org/10.14456/sjst-psu.2018.27
  25. Yolmeh, M., & Jafari, S. M. (2017). Applications of Response Surface Methodology in the Food Industry Processes. Food and Bioprocess Technology, 10(3), 413–433. https://doi.org/10.1007/s11947-016-1855-2