Main Article Content

Abstract

Universitas telah mengalami perkembangan pesat dengan penerapan teknologi informasi dan komunikasi (TIK). Salah satu inovasi terkini dalam konteks ini adalah Twin Digital Smart Campus (TDSC). TDSC melibatkan integrasi teknologi digital seperti Internet of Things (IoT), big data, dan kecerdasan buatan (AI) untuk menciptakan lingkungan pembelajaran yang dinamis dan interaktif.  Penelitian menggunakan metoda campuran kuantitatif dan kualitatif menggunakan software VOS Viewer. Penelitian ini melibatkan pengumpulan data lebih dari 990 paper, 46.823 citasi dan author/paper 3,8 dan cite/paper 46,92 bersumbaer dari google schoolar. Hasil analisis menyoroti kontribusi TDSC dalam meningkatkan efisiensi operasional, meningkatkan pengalaman mahasiswa, dan memfasilitasi adaptasi terhadap perubahan lingkungan pembelajaran yang dinamis. Terdapat sejumlah tren riset diantaranya, DeepClass-Rooms, kerangka kerja twin digital untuk pemantauan kehadiran dan konten kursus untuk sektor publik smart campus. Tren riset lain mengkaji efesiensi energi data listrik smart meter untuk mengembangkan tolok ukur energi bangunan harian dan menyelidiki bagaimana metrik tersebut dapat mengarah pada manajemen energi hampir waktu nyata. Ini berkaitan dengan tema riset pemodelan Smart Grid, pada desain dan pengembangan Digital Twin.  Teknologi berbasis IoT jaringan sensor nirkabel di bidang pemantauan lingkungan dan deteksi suasana hati untuk memberikan wawasan tentang kenyamanan juga menjadi tren fokus riset.

Keywords

Twin Digital Smart Campus DeepClassroom SmartGrid Connectivisme Pedagogy

Article Details

How to Cite
Jamaludin, J., & Saepuloh, L. (2024). Tren Riset Twin Digital Smart Campus. Sang Pencerah: Jurnal Ilmiah Universitas Muhammadiyah Buton, 10(2), 408–425. https://doi.org/10.35326/pencerah.v10i2.5317

References

  1. Anderson, T., & Dron, J. (2011). Three generations of distance education pedagogy. International Review of Research in Open and Distance Learning, 12(3), 80–97. https://doi.org/10.19173/irrodl.v12i3.890
  2. Antonijevic, P., Iqbal, M., Ubakanma, G., & ... (2022). The Metaverse evolution: Toward Future Digital Twin Campuses. 2022 Human …. https://ieeexplore.ieee.org/abstract/document/10090250/
  3. Bdiwi, R., de Runz, C., Faiz, S., & Cherif, A. A. (2019). Smart learning environment: Teacher’s role in assessing classroom attention. In Research in Learning Technology (Vol. 27). Association for Learning Technology. https://doi.org/10.25304/rlt.v27.2072
  4. Botín-Sanabria, D. M., Mihaita, A. S., Peimbert-García, R. E., & ... (2022). Digital twin technology challenges and applications: A comprehensive review. Remote Sensing. https://www.mdpi.com/2072-4292/14/6/1335
  5. Chen, X. (2020). Exploration and practice of the construction of smart campus——Taking Sichuan university as an example. ACM International Conference Proceeding Series, 36–41. https://doi.org/10.1145/3429630.3429647
  6. Clausen, A., Arendt, K., Johansen, A., Sangogboye, F. C., & ... (2021). A digital twin framework for improving energy efficiency and occupant comfort in public and commercial buildings. In Energy …. Springer. https://doi.org/10.1186/s42162-021-00153-9
  7. Debauche, O., Abdelouahid, R. A., Mahmoudi, S., Moussaoui, Y., Marzak, A., & Manneback, P. (2020). RevoCampus: A Distributed Open Source and Low-cost Smart Campus. 3rd International Conference on Advanced Communication Technologies and Networking, CommNet 2020. https://doi.org/10.1109/CommNet49926.2020.9199640
  8. Duan, H., Gao, S., Yang, X., & Li, Y. (2023). The development of a digital twin concept system. In Digital Twin. digitaltwin1.org. https://digitaltwin1.org/articles/2-10
  9. Grundström, M., & Ferrari, S. (n.d.). DESIGNING SUSTAINABLE AVIATION SOLUTIONS WITH DIGITAL TWIN APPROACH. In icas.org. https://www.icas.org/ICAS_ARCHIVE/ICAS2022/data/papers/ICAS2022_0967_paper.pdf
  10. Han, X., Yu, H., You, W., Huang, C., Tan, B., Zhou, X., & Xiong, N. N. (2022). Intelligent Campus System Design Based on Digital Twin. 1–20.
  11. Hasan, M., Abedin, M. Z., Amin, M. Bin, Nekmahmud, M., & Oláh, J. (2023). Sustainable biofuel economy: A mapping through bibliometric research. Journal of Environmental Management, 336. https://doi.org/10.1016/j.jenvman.2023.117644
  12. Huang, S., Wang, G., Lei, D., & Yan, Y. (2022). Toward digital validation for rapid product development based on digital twin: a framework. In The International Journal of Advanced …. Springer. https://doi.org/10.1007/s00170-021-08475-4
  13. Hutachok, N., Koonyosying, P., Pankasemsuk, T., Angkasith, P., Chumpun, C., Fucharoen, S., & Srichairatanakool, S. (2021). Chemical analysis, toxicity study, and free-radical scavenging and iron-binding assays involving coffee (Coffea arabica) extracts. Molecules, 26(14). https://doi.org/10.3390/molecules26144169
  14. Jiang, J., Zang, S., Li, D., Wang, K., Tian, S., Yu, A., & Zhang, Z. (2018). Determination of antioxidant capacity of thiol-containing compounds by electron spin resonance spectroscopy based on Cu2+ ion reduction. Talanta, 184, 23–28. https://doi.org/10.1016/j.talanta.2018.02.098
  15. Khampuong, P., Chairungruang, S., Rodcharoen, P., Leelittham, C., Eak-ieamvudtanakul, P., Kumpuang, C., & Chompoowong, P. (2023). Smart Campus Vocational College with Digital Twin for Sustainable Comfort Monitoring. International Journal of Educational Communications and Technology, 3(1), 10–22. https://ph01.tci-thaijo.org/index.php/IJECT/article/view/248609
  16. Komninos, A., & Tsigkas, G. (2022). Prototyping a Digital Twin System for Environmental Education. Proceedings of the 26th Pan-Hellenic …. https://doi.org/10.1145/3575879.3576018
  17. Lee, J., Azamfar, M., Singh, J., & Siahpour, S. (2020). Integration of digital twin and deep learning in cyber-physical systems: Towards smart manufacturing. IET Collaborative Intelligent Manufacturing, 2(1), 34–36. https://doi.org/10.1049/iet-cim.2020.0009
  18. Liang, W. (2020). Analysis of the Application of Artificial Intelligence. 882–885.
  19. Ma, J., Chen, H., Zhang, Y., Guo, H., Ren, Y., Mo, R., & ... (2020). A digital twin-driven production management system for production workshop. The International Journal …. https://doi.org/10.1007/s00170-020-05977-5
  20. Massafra, A., Predari, G., & Gulli, R. (2022). Towards Digital Twin Driven Cultural Heritage Management: A Hbim-Based Workflow For Energy Improvement Of Modern …. In ISPRS Annals of Photogrammetry …. researchgate.net. https://www.researchgate.net/profile/Angelo-Massafra/publication/358504358_Towards_digital_twin_driven_cultural_heritage_management_a_hbim-based_workflow_for_energy_improvement_of_modern_buildings/links/62052b8bcf7c2349ca075eec/towards-digital-twin-driven
  21. Mohammadi, A. M., Hajrasouliha, A., Cleary, J. P., & Woo, J. H. (2021). The Smart Campus as a Testing Ground for Smart Cities. ASEE Annual Conference and Exposition, Conference Proceedings.
  22. Mourtzis, D., Angelopoulos, J., Panopoulos, N., & ... (2021). A smart IoT platform for oncology patient diagnosis based on ai: towards the human digital twin. Procedia CIRP. https://www.sciencedirect.com/science/article/pii/S2212827121011823
  23. Oliver, R., & Herrington, J. (2003). Exploring Technology-Mediated Learning from a Pedagogical Perspective. Interactive Learning Environments, 11(2), 111–126. https://doi.org/10.1076/ilee.11.2.111.14136
  24. Paspatis, A., Fiorentzis, K., Katsigiannis, Y., & Karapidakis, E. (2022). Smart Campus Microgrids towards a Sustainable Energy Transition—The Case Study of the Hellenic Mediterranean University in Crete. Mathematics, 10(7). https://doi.org/10.3390/math10071065
  25. Pears, A., Barendsen, E., Dagienė, V., Dolgopolovas, V., & Jasutė, E. (2019). Holistic STEAM Education Through Computational Thinking: A Perspective on Training Future Teachers. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11913 LNCS. https://doi.org/10.1007/978-3-030-33759-9_4
  26. Razzaq, S., Shah, B., Iqbal, F., Ilyas, M., Maqbool, F., & Rocha, A. (2022). DeepClassRooms: a deep learning based digital twin framework for on-campus class rooms. Neural Computing and Applications, 35(11), 8017–8026. https://doi.org/10.1007/s00521-021-06754-5
  27. Sabic-El-Rayess, A. & Popov, N. (2013). Education in one world: Perspectives from different nations. In Bulgarian Comparative Education Society.
  28. Sharma, A., Kosasih, E., Zhang, J., Brintrup, A., & Calinescu, A. (2022). Digital Twins: State of the art theory and practice, challenges, and open research questions. Journal of Industrial Information Integration, 30(August). https://doi.org/10.1016/j.jii.2022.100383
  29. Shrestha, Y. R., Krishna, V., & von Krogh, G. (2021). Augmenting organizational decision-making with deep learning algorithms: Principles, promises, and challenges. Journal of Business Research, 123. https://doi.org/10.1016/j.jbusres.2020.09.068
  30. Song, E. Y., Burns, M., Pandey, A., & ... (2019). IEEE 1451 smart sensor digital twin federation for IoT/CPS research. 2019 IEEE Sensors …. https://ieeexplore.ieee.org/abstract/document/8706111/
  31. Sungheetha, A. (2022). Assimilation of IoT sensors for Data Visualization in a Smart Campus Environment. Journal of Ubiquitous Computing and Communication Technologies, 3(4), 241–252. https://doi.org/10.36548/jucct.2021.4.001
  32. Tsado, Y., Jogunola, O., Olatunji, F. O., & ... (2022). A Digital Twin Integrated Cyber-physical Systems for Community Energy Trading. … Technologies for Smart …. https://ieeexplore.ieee.org/abstract/document/9961012/
  33. Uhlemann, T. H. J., Schock, C., Lehmann, C., Freiberger, S., & Steinhilper, R. (2017). The Digital Twin: Demonstrating the Potential of Real Time Data Acquisition in Production Systems. Procedia Manufacturing, 9, 113–120. https://doi.org/10.1016/j.promfg.2017.04.043
  34. Wang, L., Xiao, R., & Mo, J. (2019). Quantitative detection method of semiquinone free radicals on particulate matters using electron spin resonance spectroscopy. Sustainable Cities and Society, 49, 101614. https://doi.org/10.1016/J.SCS.2019.101614
  35. WANG, X., WANG, L., YU, Y., AO, Z., & SUN, L. (2022). Survey on Characteristics, Architecture and Applications of Digital Twin Power Grid. 电子与信息学报. https://doi.org/10.11999/JEIT220629
  36. Wu, J., Huang, Z., Hang, P., Huang, C., & ... (2021). Digital twin-enabled reinforcement learning for end-to-end autonomous driving. … Conference on Digital …. https://ieeexplore.ieee.org/abstract/document/9540179/
  37. Xu, Y., Sun, Y., Liu, X., & Zheng, Y. (2019). A Digital-Twin-Assisted Fault Diagnosis Using Deep Transfer Learning. IEEE Access, 7, 19990–19999. https://doi.org/10.1109/ACCESS.2018.2890566
  38. Yan, J., Lu, Q., Fang, Z., Li, N., Chen, L., & ... (2022). From building to city level dynamic digital Twin: a review from data management perspective. IOP Conference Series …. https://doi.org/10.1088/1755-1315/1101/9/092033
  39. Zaballos, A., Briones, A., Massa, A., Centelles, P., & Caballero, V. (2020). A smart campus’ digital twin for sustainable comfort monitoring. Sustainability (Switzerland), 12(21), 1–33. https://doi.org/10.3390/su12219196
  40. Zheng, T., Liu, M., Puthal, D., Yi, P., Wu, Y., & He, X. (2022). Smart Grid: Cyber Attacks, Critical Defense Approaches, and Digital Twin. ArXiv Preprint ArXiv …. https://arxiv.org/abs/2205.11783